Thursday 7 December 2017

Virtual reality users must learn to use what they see in Maastricht


Virtual reality users must learn to use what they see

by Chris Barncard, 4 December 2017

Anyone with normal vision knows that a ball that seems to quickly be growing larger is probably going to hit them on the nose. But strap them into a virtual reality headset, and they still may need to take a few lumps before they pay attention to the visual cues that work so well in the real world, according to a new study from University of Wisconsin-Madison psychologists.

 "The companies leading the virtual reality revolution have solved major engineering challenges—how do you build a small headset that does a good job presenting images of a virtual world," says Bas Rokers, UW-Madison psychology professor. "But they have not thought as much about how the brain processes these images. How do people perceive a virtual world?" Turns out, they don't perceive it like the real world—at least not without training, according a study Rokers and postdoctoral psychology researcher Jacqueline Fulvio published recently in the journal Nature Scientific Reports.

"Most importantly, they confused whether the object was coming toward them or going away from them," she says. "It was a surprising finding. Nobody believed it, because it's not something that happens often in the real world. You'd get hurt." The researchers decided to move the test to virtual reality to provide more realistic indications of motion in three dimensions—such as binocular cues, in which slightly different views from the left and right eye reveal depth, and parallax, where closer objects appear to be moving faster than those farther away.

"We thought it was as easy as taking the same object-tracking task, putting it in the virtual environment, and having people do it the same way," Fulvio says. "And they did do it the same way. They made the same mistakes." Given a one-second snippet of the movement of a small, round target across a plane that stretched away from the viewer at roughly eye level, study participants correctly moved a virtual paddle to intercept the target's course less than a quarter of the time. Continue reading at MedicalXpress

No comments:

Post a Comment